FAIRCHILD

SEMICONDUCTOR

FSAV331 Dual 4:1 Wide Bandwidth Video Switch

General Description

The Fairchild video switch FSAV331 is a dual 4:1 high speed video switch which can be configured as either multiplexer or demultiplexer. Low On Resistance allows inputs to be connected to outputs without adding propagation delay or generating additional ground bounce noise.

When the OE Pin is LOW, $\rm S_0$ and $\rm S_1$ connect the A Port to the selected B Port output. When the OE Pin is HIGH, the switch is OPEN and a HIGH-Impedance state exists between the two ports.

Features

Wide bandwidth: 300 MHz
-73 dB non adjacent channel crosstalk at 10MHz

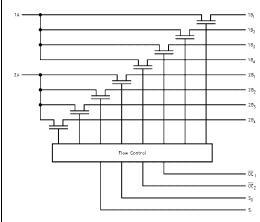
April 2004

Revised May 2004

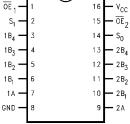
- -75 dB for adjacent charmer cross
 -56 dB Off Isolation at 10MHz
- 3 Ω typical On Resistance (R_{ON})
- Low power consumption (3uA maximum)
- Control input: TTL compatible

Applications

 Y/C video or CVBS video switch in LCD, plasma, and projector displays


Ordering Code:

Package Number	Package Description
MQA16	16-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150" Wide
MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
	MQA16


Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Logic Diagram

Connection Diagram

Pin Descriptions

Pin Name	Description
$\overline{OE}_1, \overline{OE}_2$	Bus Switch Enables
S ₀ , S ₁	Select Inputs
A	Bus A
B ₁ , B ₂ , B ₃ , B ₄	Bus B

Truth Table

S 1	S ₀	OE ₁	OE ₂	Function
Х	Х	Н	Х	Disconnect 1A
Х	Х	х	н	Disconnect 2A
L	L	L	L	$A = B_1$
L	н	L	L	$A = B_2$
н	L	L	L	$A = B_3$
н	Н	L	L	$A = B_4$

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Switch Voltage (Note 2)	-0.5V to V _{CC} + 0.5V
DC Input Voltage (VIN) (Note 2)	-0.5V to +7.0V
DC Input Diode Current	–50 mA
DC Output Current	128 mA
Storage Temperature Range (T _{STG})	-65°C to +150 °C
ESD (Human Body Model)	2000V

Recommended Operating Conditions (Note 3)

Supply Voltage (V _{CC})	4.75V to 5.25V
Control Input Voltage	0V to V_{CC}
Switch Input Voltage	0V to V_{CC}
Operating Temperature	$-40^{\circ}C$ to $+85^{\circ}C$
Thermal Resistance	
(TSSOP)	100°C/W
(QSOP)	127°C/W

Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The Recommended Operating Conditions tables will define the conditions for actual device operation.

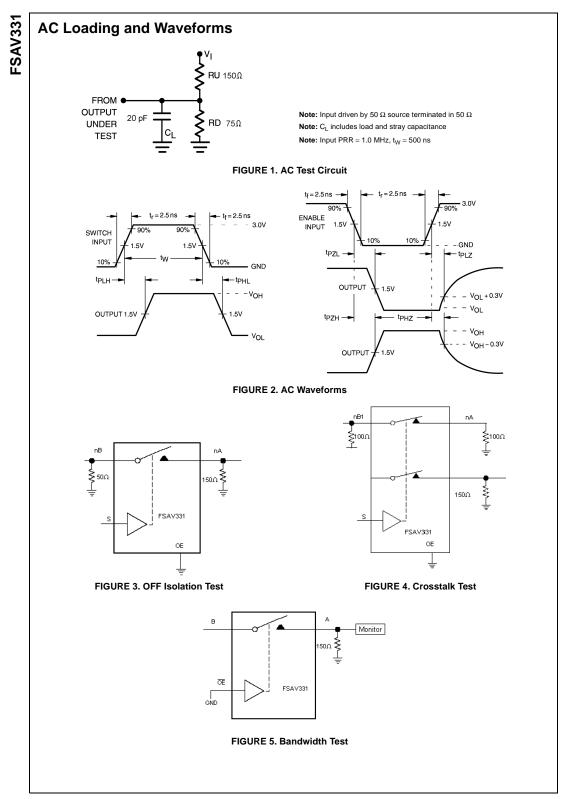
Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

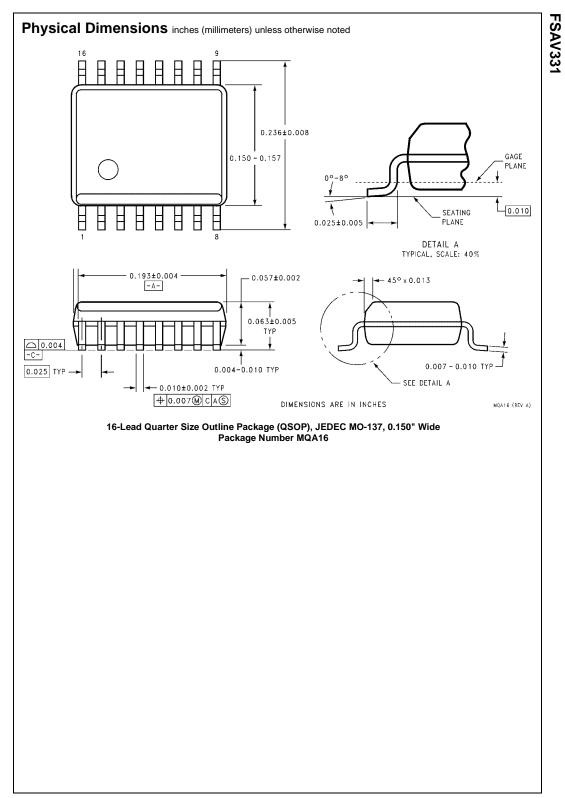
Note 3: Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics All typical value are for $V_{CC} = 5V @ 25^{\circ}C$ unless otherwise specified.

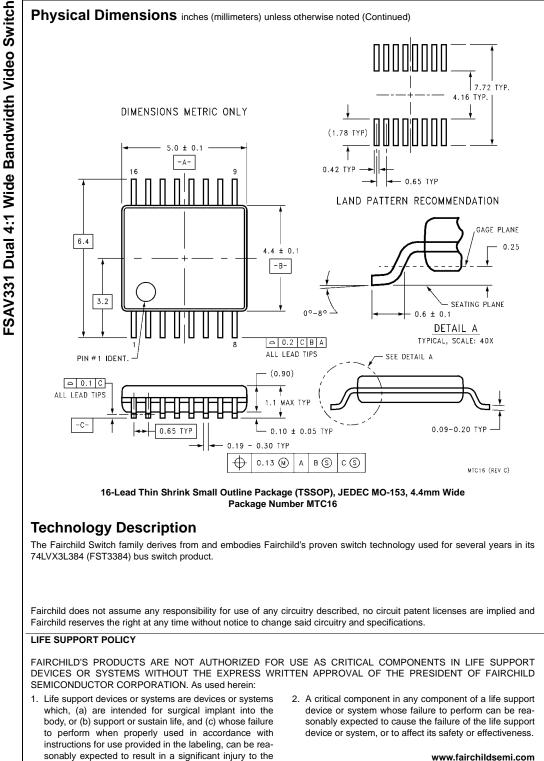
Symbol	Parameter	v _{cc}	$T_A = -40 \ ^\circ C \ to \ +85 \ ^\circ C$			Units	Conditions	
Cymbol	i di difictor	(V)	Min	Тур	Max	onico	Conditiona	
V _{ANALOG}	Analog Signal Range	4.75 - 5.25	0		2.0	V		
V _{IK}	Clamp Diode Voltage	4.75			-1.2	V	I _{IN} = -18 mA	
VIH	Input Voltage HIGH	4.75 - 5.25	2.0			V		
VIL	Input Voltage LOW	4.75 - 5.25			0.8	V		
I _{IN}	Control Input Leakage	5.25			±1.0	μΑ	$V_{IN} = 0V$ to V_{CC}	
I _{OZ}	OFF-STATE Leakage Current	5.25			±1.0	μΑ	$0 \le A, B \le V_{CC}$	
R _{ON}	Switch On Resistance	4.75		3.3	7.0	Ω	$V_{IN} = 1V$, $R_L = 75\Omega$, $I_{ON} = 13$ mA	
	(Note 4)	4.75		5.0	10.0	Ω	$V_{IN} = 2V, R_L = 75\Omega, I_{ON} = 26 \text{ mA}$	
I _{CC}	Quiescent Supply Current	5.25			3.0	μΑ	$V_{IN} = 0V$ or V_{CC} , $I_{OUT} = 0V$	

Note 4: Measured by the voltage drop between A and B Pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B Ports).


AC Electrical Characteristics


Symbol	Parameter	V _{cc}	$T_A=-40~^\circ C$ to +85 $^\circ C$			Units	Conditions	Figure
		(V)		Conditions	Number			
t _{ON}	Turn ON Time S-to-Bus B	4.75 to 5.25	1.0		5.3	ns	V_{I} = 7V for t_{PZL} and V_{I} = OPEN for t_{PZH}	Figures
	Output Enable Time OE-to-A or B	4.75 to 5.25	1.0		5.3	115		1, 2
t _{OFF}	Turn OFF Time S-to-Bus B	4.75 to 5.25	1.0		5.8	ns	V_{I} = 7V for t_{PLZ} and V_{I} = OPEN for t_{PHZ}	Figures
	Output Disable Time OE-to-A or B	4.75 to 5.25	1.0		5.5	115		1, 2
t _{PLH} ,	Propagation Delay (Note 5)	4.75 to 5.25			0.1	ns	V _I OPEN	Figures 1, 2
t _{PHL}	Select-to-Bus A Delay	4.75 to 5.25			5.0	115		
DG	Differential Gain	4.75 to 5.25		0.26		%	$R_L = 150\Omega$, f = 3.58MHz	
DP	Differential Phase	4.75 to 5.25		0.23		Degree	$R_L = 150\Omega$, f = 3.58MHz	
O _{IRR}	Non Adjacent OFF-Isolation	4.75 to 5.25		-56.0		dB	$f = 10MHz, R_L = 150\Omega$	Figure 3
X _{TALK}	Non Adjacent Channel Crosstalk	4.75 to 5.25		-73.0		dB	$R_L = 150\Omega$, f = 10MHz	Figure 4
BW	-3dB Bandwidth	4.75 to 5.25		300		MHz	$R_{\rm L} = 150\Omega$	Figure 5

Capacitance


Symbol	Parameter	$T_A = -40~^\circ C$ to +85 $^\circ C$	Units	Conditions
	i alameter	Тур	Units	
C _{IN}	Control Pin Input Capacitance	3.0	pF	$V_{CC} = 5.0V$
C _{ON}	A/B On Capacitance	39.0	pF	$V_{CC} = 5.0, \overline{OE} = 0V$
C _{OFF}	Port B OFF Capacitance	5.0	pF	V_{CC} and $\overline{OE} = 5.0V$
	Port A OFF Capacitance	13.0	pF	VCC and OL = 5.0V

FSAV331

www.fairchildsemi.com

www.fairchildsemi.com

user.